git clone ''

(ql:quickload :clojure-emacs.clojure-mode)

License GPL 3 MELPA MELPA Stable circleci

Clojure Mode

Provides Emacs font-lock, indentation, navigation and refactoring for the Clojure(Script) programming language.

This document assumes you're familiar with Emacs. More thorough walkthroughs, targeting Emacs beginners, are available at and Clojure for the Brave and the True. Keep in mind, however, that they might be out-of-date.

This documentation tracks the master branch of clojure-mode. Some of the features and settings discussed here might not be available in older releases (including the current stable release). Please, consult the relevant git tag (e.g. 5.1.0) if you need documentation for a specific clojure-mode release.


Available on the major package.el community maintained repos - MELPA Stable and MELPA repos.

MELPA Stable is the recommended repo as it has the latest stable version. MELPA has a development snapshot for users who don't mind (infrequent) breakage but don't want to run from a git checkout.

You can install clojure-mode using the following command:

M-x package-install [RET] clojure-mode [RET]

or if you'd rather keep it in your dotfiles:

(unless (package-installed-p 'clojure-mode)
  (package-install 'clojure-mode))

If the installation doesn't work try refreshing the package list:

M-x package-refresh-contents

Bundled major modes

The clojure-mode package actually bundles together several major modes:

All the major modes derive from clojure-mode and provide more or less the same functionality. Differences can be found mostly in the font-locking - e.g. ClojureScript has some built-in constructs that are not present in Clojure.

The proper major mode is selected automatically based on the extension of the file you're editing.

Having separate major modes gives you the flexibility to attach different hooks to them and to alter their behavior individually (e.g. add extra font-locking just to clojurescript-mode) .

Note that all modes derive from clojure-mode, so things you add to clojure-mode-hook and clojure-mode-map will affect all the derived modes as well.


In the spirit of Emacs, pretty much everything you can think of in clojure-mode is configurable.

To see a list of available configuration options do M-x customize-group RET clojure.

Indentation options

The default indentation rules in clojure-mode are derived from the community Clojure Style Guide. Please, refer to the guide for the general Clojure indentation rules.

Indentation of docstrings

By default multi-line docstrings are indented with 2 spaces, as this is a somewhat common standard in the Clojure community. You can however adjust this by modifying clojure-docstring-fill-prefix-width. Set it to 0 if you don't want multi-line docstrings to be indented at all (which is pretty common in most lisps).

Indentation of function forms

The indentation of function forms is configured by the variable clojure-indent-style. It takes three possible values:

(some-function 10
(some-function 10
(some-function 10

Note: Prior to clojure-mode 5.10 the configuration options for clojure-indent-style used to be keywords, but now they are symbols. Keywords will still be supported at least until clojure-mode 6.

Indentation of macro forms

The indentation of special forms and macros with bodies is controlled via put-clojure-indent, define-clojure-indent and clojure-backtracking-indent. Nearly all special forms and built-in macros with bodies have special indentation settings in clojure-mode. You can add/alter the indentation settings in your personal config. Let's assume you want to indent ->> and -> like this:

(->> something

You can do so by putting the following in your config:

(put-clojure-indent '-> 1)
(put-clojure-indent '->> 1)

This means that the body of the ->/->> is after the first argument.

A more compact way to do the same thing is:

  (-> 1)
  (->> 1))

You can also specify different indentation settings for symbols prefixed with some ns (or ns alias):

(put-clojure-indent 'do 0)
(put-clojure-indent 'my-ns/do 1)

The bodies of certain more complicated macros and special forms (e.g. letfn, deftype, extend-protocol, etc) are indented using a contextual backtracking indentation method, require more sophisticated indent specifications. Here are a few examples:

  (implement '(1 (1)))
  (letfn     '(1 ((:defn)) nil))
  (proxy     '(2 nil nil (1)))
  (reify     '(:defn (1)))
  (deftype   '(2 nil nil (1)))
  (defrecord '(2 nil nil (1)))
  (specify   '(1 (1)))
  (specify   '(1 (1))))

These follow the same rules as the :style/indent metadata specified by cider-nrepl. For instructions on how to write these specifications, see this document. The only difference is that you're allowed to use lists instead of vectors.

Vertical alignment

You can vertically align sexps with C-c SPC. For instance, typing this combo on the following form:

(def my-map
  {:a-key 1
   :other-key 2})

Leads to the following:

(def my-map
  {:a-key     1
   :other-key 2})

This can also be done automatically (as part of indentation) by turning on clojure-align-forms-automatically. This way it will happen whenever you select some code and hit TAB.

Refactoring support

The available refactorings were originally created and maintained by the clj-refactor.el team. The ones implemented in Elisp only are gradually migrated to clojure-mode.

Threading macros related features

clojure-thread: Thread another form into the surrounding thread. Both ->> and -> variants are supported.

clojure-unwind: Unwind a threaded expression. Supports both ->> and ->.

clojure-thread-first-all: Introduce the thread first macro (->) and rewrite the entire form. With a prefix argument do not thread the last form.

clojure-thread-last-all: Introduce the thread last macro and rewrite the entire form. With a prefix argument do not thread the last form.

clojure-unwind-all: Fully unwind a threaded expression removing the threading macro.

Cycling things

clojure-cycle-privacy: Cycle privacy of defs or defns. Use metadata explicitly with setting clojure-use-metadata-for-privacy to t for defns too.

clojure-cycle-not: Add or remove a not form around the current form.

clojure-cycle-when: Find the closest when or when-not up the syntax tree and toggle it.

clojure-cycle-if: Find the closest if or if-not up the syntax tree and toggle it. Also transpose the else and then branches, keeping the semantics the same as before.

Convert collection

Convert any given collection at point to list, quoted list, map, vector or set.

Let expression

clojure-introduce-let: Introduce a new let form. Put the current form into its binding form with a name provided by the user as a bound name. If called with a numeric prefix put the let form Nth level up in the form hierarchy.

clojure-move-to-let: Move the current form to the closest let's binding form. Replace all occurrences of the form in the body of the let.

clojure-let-forward-slurp-sexp: Slurp the next form after the let into the let. Replace all occurrences of the bound forms in the form added to the let form. If called with a prefix argument slurp the next n forms.

clojure-let-backward-slurp-sexp: Slurp the form before the let into the let. Replace all occurrences of the bound forms in the form added to the let form. If called with a prefix argument slurp the previous n forms.

paredit-convolute-sexp is advised to replace occurrences of bound forms with their bound names when convolute is used on a let form.

Rename ns alias

clojure-rename-ns-alias: Rename an alias inside a namespace declaration.

Add arity to a function

clojure-add-arity: Add a new arity to an existing single-arity or multi-arity function.

Related packages

(require 'clojure-mode-extra-font-locking)

The code in clojure-mode-font-locking used to be bundled with clojure-mode before version 3.0.

You can also use the code in this package as a basis for extending the font-locking further (e.g. functions/macros from more namespaces). Generally you should avoid adding special font-locking for things that don't have fairly unique names, as this will result in plenty of incorrect font-locking. CIDER users should avoid this package, as CIDER does its own dynamic font-locking, which is namespace-aware and doesn't produce almost any false positives.

(add-hook 'clojure-mode-hook #'subword-mode)
(add-hook 'clojure-mode-hook #'paredit-mode)
(add-hook 'clojure-mode-hook #'smartparens-strict-mode)
(add-hook 'clojure-mode-hook #'rainbow-delimiters-mode)
(add-hook 'clojure-mode-hook #'aggressive-indent-mode)

REPL Interaction

One of the fundamental aspects of Lisps in general, and Clojure in particular, is the notion of interactive programming - building your programs by continuously changing the state of the running Lisp program (as opposed to doing something more traditional like making a change and re-running the program afterwards to see the changes in action). To get the most of clojure-mode you'll have to combine it with some tool which will allow you to interact with your Clojure program (a.k.a. process/REPL).

A number of options exist for connecting to a running Clojure process and evaluating code interactively.

Basic REPL

inf-clojure provides basic interaction with a Clojure REPL process. It's very similar in nature and supported functionality to inferior-lisp-mode for Common Lisp.


CIDER is a powerful Clojure interactive development environment, similar to SLIME for Common Lisp.

If you're into Clojure and Emacs you should definitely check it out.


An extensive changelog is available here.


Copyright © 2007-2019 Jeffrey Chu, Lennart Staflin, Phil Hagelberg, Bozhidar Batsov, Artur Malabarba and contributors.

Distributed under the GNU General Public License; type C-h C-c to view it.